
Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

CS 4530: Fundamentals of Software Engineering
Module 10: Application Level Patterns

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module
• By the end of this module you should be able to:

• describe the basic ideas of the following architectures, with
examples and pictures

• anarchic
• layered
• pipeline
• event-driven
• microkernel
• microservice

• describe the main features of the following communication
modalities:

• procedure calls
• HTTP and REST
• Websockets

2

Three Scales of Design

3

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Design at larger scales

• Metaphor: building
architecture

• How do the pieces fit
together? Are there
parts we can reuse?

• Will the result be
structurally sound?
earthquake-resistant?
economical to build?
easy to maintain?

Goal: Create a high-level picture of the system
• Abstract details away into reusable components
• Allows for analysis of high-level design before

implementation
• Enables exploration of design alternatives
• Reduce risks associated with building the software

Architecture #0: Anarchic
• A single app, with no particular

organization
• Also known as: "spaghetti code"
• May still have useful interfaces for

some degree of encapsulation and
modularity.

• but is there a method to the madness?

6
Brian Foote and Joe Yoder

Shakespeare, Hamlet. The exact quote is: "Though
this be madness, yet there is method in't" (Polonius,
Act 2, Scene 2)

Architecture #0: Anarchic
• OK for single-developer, short-lived

projects
• But

• what happens if you want to add a new
developer

• what happens if you need to come back
to the code later?

7
Brian Foote and Joe Yoder

Architecture #1: Layered
• Each layer has specific

responsibility
• Each layer depends on

services from the layer
or layers below

• Organize teams by Layer
• different layers require

different expertise

• When the layers are run
on separate pieces of
hardware, they are
sometimes called "tiers"

8

Layered Architecture (contd)
• Typical organization for

operating systems
• Layers communicate

through procedure calls and
callbacks ("up-calls")

• Well-defined interfaces are
a must!

9

Layers from a Spring '21 example

10

index.ts : contains scripts to be executed.
Calls: getTranscript, getStudentIDs, etc., corresponding to the REST
endpoints

dataService.ts: provides REST endpoints
exports: getTranscript, getStudentIDs, etc.

remoteService.ts : provides http methods
exports: remoteGet, remotePost, etc.

axios: an npm package that actually does the http work
provides: axios.get, axios.post, etc

This is the only module that
refers to axios. So if we
switch to another http
package, this is the only file
that needs changing

Architecture #2: Pipeline
• Good for complex straight-line

processes, eg image processing

11

Also good for visualizing hardware

12

How do the stages communicate?
• That's the next-level decision

• data-push (each stage invokes the next)
• demand-pull (each stage demands data from its

predecessor)
• queues? buffers?
• ??

13

In Express, each stage gets an object that
represents the rest of the pipeline

14

 app.use((req, res) => {
 res.status(404).json({
 error: 'Not Found',
 message:
 `Route ${req.method} ${req.originalUrl} not found`
 });

Architecture #3: Event-Driven Architecture
• Metaphor: a bunch of

bureaucrats shuffling papers
• Each processing unit has an in-

box and one or more out-boxes
• Each unit takes a task from its

inbox, processes it, and puts
the results in one or more
outboxes.

• Stages may be connected by
asynchronous message queues.

• Or use the observer pattern,
where each unit observes
changes in its upstream units.

• Conditional flow

15

Architecture #4: Plugins ("microkernel")
• System consists of a small core (the

"microkernel") for essential
functions, and lots of hooks for
adding other services

• Highly extensible
• Plug-ins can be designed by small,

less-experienced teams– even by
users!

• Connection methods may vary
• often: core provides default behaviors

that are overridable

16

Key Concepts for Plugin Architecture
• Activation Events: when does your extension run?
• Host API: what procedures in the host app can your

extension call?
• Contribution Point: what your extension

contributes to the host (e.g. new commands,
menus, pipeline stages, etc.)

17

Example 1: git hooks
• git provides a fixed set of activation events (files in .git/hooks)
• the user can extend git's default behavior by changing these

files

18

$ cat .git/hooks/pre-merge-commit.sample
#!/bin/sh
#
An example hook script to verify what is about to be committed.
Called by "git merge" with no arguments. The hook should
exit with non-zero status after issuing an appropriate message to
stderr if it wants to stop the merge commit.
#
To enable this hook, rename this file to "pre-merge-commit".

. git-sh-setup
test -x "$GIT_DIR/hooks/pre-commit" &&
 exec "$GIT_DIR/hooks/pre-commit"
:

Example 2: express

19

export const createApp = (): express.Application => {
 const app = express();

 // Middleware for parsing JSON requests
 app.use(express.json());

 // Addition endpoint
 app.get('/sum/:i/:j', getSum);

 // get the rest of the routes from frontend/dist
 app.use(express.static('frontend/dist'));

 app.use((req, res) => {
 res.status(404).json({
 error: 'Not Found',
 message: `Route ${req.method} ${req.originalUrl} not found`
 });
 });

Architecture #5: Microservices
• Overall task is divided into different components
• Each component is implemented independently
• Each component is

• independently replaceable,
• independently updatable

• Components can be built as libraries, but more usually as
web services

• Services communicate via HTTP, typically REST (see next lesson)

20

Microservices: Schematic Example

21

Productivity
App

Frontend

“Dumb”
App
Server

Mod 1
REST
service

Database

Mod 2
REST
service

Database

Mod 3
REST
service

Database

Mod 4
REST
service

Database

Mod 5
REST
service

Database

Mod 6
REST
service

Database

REST

Todos
NodeJS, MongoDB

Mailer
Java, MySQL

Logins
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages,
different operating
systems

Microservice Advantages and Disadvantages
• Advantages

• services may scale differently, so can be implemented on
hardware appropriate for each (how much cpu, memory,
disk, etc?). Ditto for software (OS, implementation
language, etc.)

• services are independent (yay for interfaces!) so can be
developed and deployed independently

• Disadvantages
• service discovery?
• should services have some organization, or are they all

equals?
• overall system complexity

22

Microservices are (a) highly scalable and (b)
trendy
• Microservices at Netflix:

• 100s of microservices
• 1000s of daily production changes
• 10,000s of instances
• BUT:
• only 10s of operations engineers

23

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b (2017)

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Lesson 10.2: Patterns of Communication
1. Procedure Calls (with callbacks)
2. HTTP

• REST: a pattern for HTTP

3. Sockets

24

1. Procedure Calls
• Simplest
• Call + Return
• Call + Callback
• Only really works if both parties are in the same

address space
• Best suited to layered architecture
• Less well-suited to pipeline (e.g. express)

25

2. HTTP
• Client-Server protocol
• Client sends a request, Server sends a response
• Can be used for Pull pattern

• client requests data from server, server responds with
data

• "GET request"

• Can also be used for Push pattern
• client sends local data to the server, server responds

with acknowledgement
• "POST request"

26

REST is a pattern for using HTTP
• Stands for "Representational State Transfer"
• Each request contains enough information that a different

server could process it
• GET requests don't change server state

• they are "idempotent"

• PUT requests are the ones that update the server state
• not idempotent (eg "don't hit the PAY button more than once.")

• Uniform Interface - Standard way to specify interface

27

Uniform Interface: URIs are nouns
• In a RESTful system, the server is visualized as a

store of named resources (nouns), each of which
has some data associated with it.

• A URI is a name for such a resource.

28

Examples
• Examples:

• /cities/losangeles
• /transcripts/00345/graduate (student 00345

has several transcripts in the system; this is the graduate
one)

• Non-examples:
• /getCity/losangeles
• /getCitybyID/50654
• /Cities.php?id=50654

29

Useful heuristic: if you
were keeping this data in
a bunch of files, what
would the directory
structure look like?
But you don't have to
actually keep the data in
that way.

We prefer plural nouns for
toplevel resources, as you
see here.

Path parameters specify portions of the path
to the resource
For example, your REST protocol might allow a path like

/transcripts/00345/graduate

In a REST protocol, this API might be described as

/transcripts/:studentid/graduate

:studentid is a path parameter, which is replaced by the value
of the parameter

30

Query parameters allow named parameters
Examples:

• /transcripts/graduate?lastname=covey&firstname=avery
These are typically used to specify more flexible queries, or to embed
information about the sender’s state, eg

• https://calendar.google.com/calendar/u/0/r/month/2023
/2/1?tab=mc&pli=1

This URI combines path parameters for the month and date, and query
parameters for the format (tab and pli).

31

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1

You can also put parameters in the body.
• You can put additional parameters or information in the

body, using any coding that you like. (We’ll usually use
JSON)

• You can also put parameters in the headers.
• Choose where to put parameters based on

readability/copyability:
• Path parameters provide a link to a resource
• Query parameters modify how that resource is viewed/acted

upon
• Headers are transparent to users
• Body parameters have unrestricted length

32

Uniform Interface:
Verbs are represented as http methods
• In REST, there are exactly four things you can do

with a resource
• POST: requests that the server create a resource

with a given value.
• GET: requests that the server respond with a

representation of the resource

• (there are some others, but they are rarely used)

Example interface #1: a todo-list manager
• Resource: /todos

• GET /todos - get list all of my todo items
• POST /todos - create a new todo item (data in body;

returns ID number of the new item)

• Resource: /todos/:todoItemID
• :todoItemID is a path parameter
• GET /todos/:todoItemID - fetch a single item by id
• PUT /todos/:todoItemID - update a single item (new

data in body)
• DELETE /todos/:todoItemID - delete a single item

Example interface #2: the transcript database
POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name', url-encoded (eg name=avery)
-- Multiple students may have the same name.
GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade'.
-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.
GET /studentids?name=string
-- returns list of IDs for student with the given name

Remember the heuristic:
if you were keeping this
data in a bunch of files,
what would the directory
structure look like?

Didn't seem to fit
the model, sorry

It would be better to have a machine-
readable specification
• The specification of the transcript API on the last

slide is RESTful, but is not machine-readable
• A machine-readable specification is useful for:

• Automatically generating client and server boilerplate,
documentation, examples

• Tracking how an API evolves over time
• Ensuring that there are no misunderstandings

OpenAPI is a machine-readable specification
language for REST
• Uses YAML syntax
• Not really convenient for

human use
• Better: use a tool!

/towns/{townID}/viewingArea:
post:
operationId: CreateViewingArea

responses:
'204':

description: No content
'400':
description: Invalid values specified
content:
application/json:

schema:
$ref: '#/components/schemas/InvalidParametersError'

description: Creates a viewing area in a given town
tags:
- towns

security: []
parameters:
- description: ID of the town in which to create the new viewing area

in: path
name: townID
required: true
schema:
type: string
- description: |-
session token of the player making the request, must

match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true
schema:
type: string

requestBody:
description: The new viewing area to create

required: true
content:
application/json:

schema:
$ref: '#/components/schemas/ViewingArea'

description: The new viewing area to create

Tools for making these protocols machine-
readable
• TSOA

• reads an annotated controller file
• but only works with particular controller structures

• Swagger
• human-annotated controller and route files
• generates nice docs
• but still requires human attention to ensure consistency,

validation

38

Swagger example (in a routes file)

39

/**
* @swagger
* /authors/{id}:
* put:
* summary: Update an author
* tags: [Authors]
* parameters:
* - in: path
* name: id
* required: true
* schema:
* type: string

======= many lines omitted ======

* responses:
* 200:
* description: Author updated successfully
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Author'
* 404:
* description: Author not found
*/
router.put('/:id', updateAuthorById);

Detailed description of the
request, in YAML, human-
written

Swagger-generated documentation

40

Can also run
queries right from
this page!

But we'd like to do better
• No guarantee the human-written descriptions are

accurate!
• Correct extraction of data from a request?
• Automatic validation?

• There are tools for this, too
• swagger-codegen
• OpenAPI Generator
• …and others

41

3. Websockets
• Server-Client

• We saw this earlier in Module 05.
• Client talks only to server
• Server can talk to a single client or to subsets of the

clients
• Either side can initiate a conversation
• Allows for more complex protocols

• like we saw in Module05
• NOT query-response

• though a particular protocol may do some of this
• But generally less scalable than HTTP.

42

Review
• You should now be able to:

• describe the basic ideas of the following architectures, with
examples and pictures

• anarchic
• layered
• pipeline
• event-driven
• microkernel
• microservice

• describe the main features of the following communication
modalities:

• procedure calls
• HTTP and REST
• Websockets

43

	CS 4530: Fundamentals of Software Engineering�Module 10: Application Level Patterns
	Learning Objectives for this Module
	Three Scales of Design
	Design at larger scales
	Goal: Create a high-level picture of the system
	Architecture #0: Anarchic
	Architecture #0: Anarchic
	Architecture #1: Layered
	Layered Architecture (contd)
	Layers from a Spring '21 example
	Architecture #2: Pipeline
	Also good for visualizing hardware
	How do the stages communicate?
	In Express, each stage gets an object that represents the rest of the pipeline
	Architecture #3: Event-Driven Architecture
	Architecture #4: Plugins ("microkernel")
	Key Concepts for Plugin Architecture
	Example 1: git hooks
	Example 2: express
	Architecture #5: Microservices
	Microservices: Schematic Example
	Microservice Advantages and Disadvantages
	Microservices are (a) highly scalable and (b) trendy
	Lesson 10.2: Patterns of Communication
	1. Procedure Calls
	2. HTTP
	REST is a pattern for using HTTP
	Uniform Interface: URIs are nouns
	Examples
	Path parameters specify portions of the path to the resource
	Query parameters allow named parameters
	You can also put parameters in the body.
	Uniform Interface:�Verbs are represented as http methods
	Example interface #1: a todo-list manager
	Example interface #2: the transcript database
	It would be better to have a machine-readable specification
	OpenAPI is a machine-readable specification language for REST
	Tools for making these protocols machine-readable
	Swagger example (in a routes file)
	Swagger-generated documentation
	But we'd like to do better
	3. Websockets
	Review

