CS 4530: Fundamentals of Software Engineering
Module 10: Application Level Patterns

Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module

* By the end of this module you should be able to:
* describe the basic ideas of the following architectures, with
examples and pictures
e anarchic
* layered
e pipeline
* event-driven
* microkernel
* microservice
* describe the main features of the following communication
modalities:
e procedure calls
e HTTP and REST
* Websockets

Three Scales of Design

The Structural Scale

e key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Interaction Scale

e key questions: how do the pieces interact? how are
they related?

The Code Scale

e key question: how can | make the actual code easy
to test, understand, and modify?

Design at larger scales

* Metaphor: building
architecture

* How do the pieces fit
together? Are there
parts we can reuse?

* Will the result be
structurally sound?
earthquake-resistant?
economical to build?
easy to maintain?

Goal: Create a high-level picture of the system

* Abstract details away into reusable components

 Allows for analysis of high-level design before
implementation

* Enables exploration of design alternatives
* Reduce risks associated with building the software

Architecture #0: Anarchic

* A single app, with no particular
organization

* Also known as: "spaghetti code”

* May still have useful interfaces for
some degree of encapsulation and
modularity.

e butis there a method to the madness?

Shakespeare, Hamlet. The exact quote is: "Though
this be madness, yet there is method in't" (Polonius,
Act 2, Scene 2)

Brian Foote and Joe Yoder
6

Architecture #0: Anarchic

\

|
| 'g r/}

!

* OK for single-developer, short-lived
projects

* But

* what happens if you want to add a new
developer

* what happens if you need to come back
to the code later?

o

his -
"L P

| - X
",
%ﬁ‘i ;

"k - '.'1-'
#

r-_ f

e

Brian Foote and Joe Yoder
7

Architecture #1: Layered

* Each layer has specific

responsibility <
* Each layer depends on Presentation Layer
services from the layer)
or layers below Business Layer
* Organize teams by Layer r)
* different layers require \ Persistence Layer
different expertise
* When the layers are run Database Layer

on separate pieces of
hardware, they are
sometimes called "tiers"

Layered Architecture (contd)

 Typical organization for

operating systems —
e Layers communicate User Program
through procedure calls and /O Management
callbacks ("up-calls") Device Driver
* Well-defined interfaces are Memory Management
d must! Process Allocation multiprogramming
Hardware

fig:- layered Architecture

Layers from a Spring '21 example

index.ts : contains scripts to be executed.
Calls: getTranscript, getStudentlDs, etc., corresponding to the REST
endpoints

dataService.ts: provides REST endpoints
exports: getTranscript, getStudentlDs, etc.

This is the only module that

package, this is the only file
that veeds changing

axios: an npm package that actually does the http work
provides: axios.get, axios.post, etc

N N

remoteService.ts : provides http methods refers to axios. So if we
exports: remoteGet, remotePost, etc. switeh o another http

10

Architecture #2: Pipeline

* Good for complex straight-line
processes, eg image processing

v

[Vertex Processing

Ours

=

A

I Primitive Processing

Rasterizer

\\‘///
Fragment Processing ‘

A Simple Pipeline

' | Input Reader |
w,
|
z : | Filter |
= | Processor |
o : | Formatter | :

i |

= | Output Writer | :
|

11

Also good for visualizing hardware

. Instruction Decode Execute
Instruction Fetch Register Fetch Address Calc. Memory Access
IF ID EX MEM
Next PC
Next SEQ PC Next SEQ PC |
g
RS1 | =
RS2 Branch
* Register
File
it
= o Y.
— — —
o y =
L PC Z
| Sign Imm
Extend

Write Back

WB

am / N3

H

WB Data

12

How do the stages communicate?

* That's the next-level decision
» data-push (each stage invokes the next)

e demand-pull (each stage demands data from its
predecessor)

* queues? buffers?
° 77

13

In Express, each stage gets an object that
represents the rest of the pipeline

app.use((req, res) => {
res.status(404).json({
error: 'Not Found',
message:
"Route ${req.method} ${req.originalUrl} not found"

})s

14

Architecture #3: Event-Driven Architecture

* Metaphor: a bunch of
bureaucrats shuffling papers

* Each processing unit has an in-
box and one or more out-boxes

e Each unit takes a task from its
inbox, processes it, and puts
the results in one or more
outboxes.

* Stages may be connected by
asynchronous message queues.

* Or use the observer pattern,
where each unit observes
changes in its upstream units.

e Conditional flow

i — - Order
,,,,,,,,,,, N....» @D --»| Placement
Reiecure [PlaceOrder]
Purchasing Book Component
(Initiating Event) v
—
@

-------- >

Notification [payment-denied] [payment-applied]
y ;

Component oo v

: Order
v Fulfillment

Component

[email-sent]

P @D [order-fulfilled]
: v

Shipping

Component

T .-) [order-shipped]

Payment Inventory —>

@D (Componen)
) ponent
[inventory-updated]

Warehouse

v,

[inventory-resupplied]

15

Architecture #4: Plugins ("microkernel™)

 System consists of a small core (the
"microkernel") for essential
functions, and lots of hooks for
adding other services

* Highly extensible

* Plug-ins can be designed by small,
less-experienced teams— even by
users!

* Connection methods may vary

» often: core provides default behaviors
that are overridable

Component

Component Core System

Component

Plug-in
Component

~—
)

Plug-in
Component

)

Plug-in
Component

Key Concepts for Plugin Architecture

* Activation Events: when does your extension run?

* Host API: what procedures in the host app can your
extension call?

* Contribution Point: what your extension
contributes to the host (e.g. new commands,

menus, pipeline stages, etc.)

17

Example 1: git hooks

* git provides a fixed set of activation events (files in .git/hooks)
* the user can extend git's default behavior by changing these

files

S cat .git/hooks/pre-merge-commit.sample

#!1/bin/sh

#

An example hook script to verify what is about to be committed.
Called by "git merge" with no arguments. The hook should

exit with non-zero status after issuing an appropriate message to
stderr if it wants to stop the merge commit.

#

To enable this hook, rename this file to "pre-merge-commit".

. git-sh-setup
test -x "SGIT_DIR/hooks/pre-commit" &&
exec "SGIT_DIR/hooks/pre-commit"

18

Example 2: express

export const createApp = (): express.Application => {
const app = express();

// Middleware for parsing JSON requests
app.use(express.json());

// Addition endpoint
app.get('/sum/:i/:j"', getSum);

// get the rest of the routes from frontend/dist
app.use(express.static('frontend/dist"'));

app.use((req, res) => {
res.status(404).json({
error: 'Not Found',
message: ~Route ${reqg.method} ${req.originalUrl} not found"

})s
})s

19

Architecture #5: Microservices

e Overall task is divided into different components

* Each component is implemented independently

* Each component is

* independently replaceable,
* independently updatable

 Components can be built as libraries, but more usually as
web services

e Services communicate via HTTP, typically REST (see next lesson)

20

Different languages,
. . . different operati
Microservices: Schematic Example |scems
NodeJSI MongoDB Google Service Java, MxSQL

Productivity
App

Frontend

“Dumb”

App
Server

service

Database

REST

service service

Database Database

Search Engine

=11
service

Database

Java, Neo4J

Analytics Social Crawler
REST REST
service

service

Database Database

C#, SQLServer

Python, MongoDB

21

Microservice Advantages and Disadvantages

* Advantages

* services may scale differently, so can be implemented on
hardware appropriate for each (how much cpu, memory,
disk, etc?). Ditto for software (OS, implementation
language, etc.)

 services are independent (yay for interfaces!) so can be
developed and deployed independently

e Disadvantages
 service discovery?

* should services have some organization, or are they all
equals?
* overall system complexity

22

Microservices are (a) highly scalable and (b)
trendy

* Microservices at Netflix:
e 100s of microservices Netflix architecture

1000s of daily production changes

10,000s of instances

BUT:

only 10s of operations engineers

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b (2017)

23

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Lesson 10.2: Patterns of Communication

1. Procedure Calls (with callbacks)

2. HTTP
e REST: a pattern for HTTP

3. Sockets

24

1. Procedure Calls

e Simplest
e Call + Return

e Call + Callback

* Only really works if both parties are in the same
address space

* Best suited to layered architecture
 Less well-suited to pipeline (e.g. express)

25

2. HTTP

* Client-Server protocol
* Client sends a request, Server sends a response

e Can be used for Pull pattern

* client requests data from server, server responds with
data

e "GET request"

e Can also be used for Push pattern

* client sends local data to the server, server responds
with acknowledgement

e "POST request”

REST is a pattern for using HTTP

 Stands for "Representational State Transfer"

e Each request contains enough information that a different
server could process it

* GET requests don't change server state
* they are "idempotent”
* PUT requests are the ones that update the server state
* not idempotent (eg "don't hit the PAY button more than once.")

e Uniform Interface - Standard way to specify interface

27

Uniform Interface: URIs are nouns

* In a RESTful system, the server is visualized as a
store of named resources (nouns), each of which
has some data associated with it.

* A URI is a nhame for such a resource.

28

Examples

e Examples: - -
. c we prefer plural vouns for
/c1t1es/losangeles toplevel resources, as you

* /transcripts/00345/graduate (student 00345 | see here.

has several transcripts in the system; this is the graduate

one) Useful henristic: if you
were keepivg) this data in
* Non-examples: a bunch of files, what
. would the director
* /getCity/losangeles erchrmMr@ look lik@;1
 /getCitybyID/50654 But you don't have +o
. /Cltles.php?1d=5@654 actually keep the data in

that way.

29

Path parameters specify portions of the path
to the resource

For example, your REST protocol might allow a path like
/transcripts/00345/graduate

In a REST protocol, this APl might be described as
/transcripts/:studentid/graduate

:studentid is a path parameter, which is replaced by the value
of the parameter

30

Query parameters allow named parameters

Examples:
 /transcripts/graduate?lastname=covey&firstname=avery

These are typically used to specify more flexible queries, or to embed
information about the sender’s state, eg

* https://calendar.google.com/calendar/u/0/r/month/2023
/2/1?tab=mc&pli=1

This URI combines path parameters for the month and date, and query
parameters for the format (tab and pl1i).

31

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1

You can also put parameters in the body.

* You can put additional parameters or information in the

body, using any coding that you like. (We’ll usually use
JSON)

* You can also put parameters in the headers.

* Choose where to put parameters based on
readability/copyability:

* Path parameters provide a link to a resource

* Query parameters modify how that resource is viewed/acted
upon

* Headers are transparent to users
* Body parameters have unrestricted length

32

Uniform Interface:
Verbs are represented as http methods

* In REST, there are exactly four things you can do
with a resource

* POST: requests that the server create a resource
with a given value.

 GET: requests that the server respond with a
representation of the resource

* (there are some others, but they are rarely used)

Example interface #1: a todo-list manager

* Resource: /todos
* GET /todos - get list all of my todo items

e POST /todos - create a new todo item (data in body;
returns ID number of the new item)

e Resource: /todos/:todoltemID
 :todoltemlID is a path parameter
* GET /todos/:todoltemID - fetch a single item by id

e PUT /todos/:todoltemID - update a single item (new
data in body)

* DELETE /todos/:todoltemID - delete a single item

Example interface #2: the transcript database

Remember the heuristic:

POST /transcripts If ou were keeping this
-- adds a new student to the database, dota in a bunch of files,
-- returns an ID for this student. what would the directory

-- requires a body parameter 'name', url-encoded (eg name=avery) structure look like?

-- Multiple students may have the same name.
GET /transcripts/:ID

-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID

-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber

-- adds an entry in this student's transcript with given name and course.

-- Requires a body parameter 'grade'.

-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber

-- returns the student's grade in the specified course.

-- Fails if student or course is missing.
GET /studentids?name=string Didn'+ seem +o fit

-- returns list of IDs for student with the given name the model, sorry

It would be better to have a machine-
readable specification

* The specification of the transcript APl on the last
slide is RESTful, but is not machine-readable

* A machine-readable specification is useful for:

e Automatically generating client and server boilerplate,
documentation, examples

* Tracking how an API evolves over time
* Ensuring that there are no misunderstandings

OpenAPI is a machine-readable specification
language for REST

° Uses YAML Syntax /cous/ (sounTD) viewinghres:

operationId: CreateViewingArea
responses:

* Not really convenient for e e conn

'400":

r] description: Invalid values specified
uman use

application/json:
schema:
°® B o l Sref: '#/components/schemas/InvalidParametersError'
etter. use a too M4 description: Creates a viewing area in a given town
tags:
- towns
security: []
parameters:
- description: ID of the town in which to create the new viewing area
in: path
name: townID
required: true

schema:
type: string
- description: |-

session token of the player making the request, must
match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true

schema:
type: string
requestBody:

description: The new viewing area to create
required: true
content:

application/json:
schema:

Sref: '#/components/schemas/ViewingArea'
description: The new viewing area to create

Tools for making these protocols machine-
readable

* TSOA

* reads an annotated controller file
* but only works with particular controller structures

* Swagger
e human-annotated controller and route files
e generates nice docs

* but still requires human attention to ensure consistency,
validation

38

Swagger example (in a routes file)

/%%

* @swagger
* /Jauthors/{id}:

*

* K K X X X ¥ ¥

* K K X X X ¥ ¥ ¥

*/

put:

summary: Update an author
tags: [Authors]
parameters:
- in: path
name: id
required: true
schema:
type: string

responses:
200:
description: Author updated successfully
content:
application/json:
schema:

$ref: '#/components/schemas/Author’
404 .
description: Author not found

router.put('/:id', updateAuthorById);

A

Detailed description of the
request, in YAML, human-
written

39

Swagger-generated documentation

@ Swagger Ul X ar =] *
« G @ localhost:3000/api-docs/#/Au... & Yt B » 8§ = Q9% ® Rl &3 o & &)
88 [3 C54530 ¥ Claude M Gmail - Inbox M Gmail @ Admin [E] Google Calendar & Google Drive [Readwise » [All Bookmarks
200 List of authors No links
Media type
application/json v
Controls Accept header.
Example Value Schema
‘m fauthors Create a new author v ‘
L]
‘m fauthors/{id} GetauthorbyID v ‘
fauthors/{id} Update an author A
‘ fauthors/{id} Delete an author v ‘
Book Copies ~
‘m /book-copies Get all book copies N ‘

-

Can also run
queries right from
this page!

40

But we'd like to do better

* No guarantee the human-written descriptions are
accurate!
e Correct extraction of data from a request?
* Automatic validation?

* There are tools for this, too
* swagger-codegen
* OpenAPIl Generator
e ...and others

41

3. Websockets

e Server-Client
 We saw this earlier in Module 05.
* Client talks only to server

* Server can talk to a single client or to subsets of the
clients

Either side can initiate a conversation

Allows for more complex protocols

* like we saw in Module05
NOT query-response

* though a particular protocol may do some of this
But generally less scalable than HTTP.

42

Review

* You should now be able to:
* describe the basic ideas of the following architectures, with
examples and pictures
e anarchic
* layered
e pipeline
* event-driven
* microkernel
* microservice
* describe the main features of the following communication
modalities:
e procedure calls
e HTTP and REST
* Websockets

43

	CS 4530: Fundamentals of Software Engineering�Module 10: Application Level Patterns
	Learning Objectives for this Module
	Three Scales of Design
	Design at larger scales
	Goal: Create a high-level picture of the system
	Architecture #0: Anarchic
	Architecture #0: Anarchic
	Architecture #1: Layered
	Layered Architecture (contd)
	Layers from a Spring '21 example
	Architecture #2: Pipeline
	Also good for visualizing hardware
	How do the stages communicate?
	In Express, each stage gets an object that represents the rest of the pipeline
	Architecture #3: Event-Driven Architecture
	Architecture #4: Plugins ("microkernel")
	Key Concepts for Plugin Architecture
	Example 1: git hooks
	Example 2: express
	Architecture #5: Microservices
	Microservices: Schematic Example
	Microservice Advantages and Disadvantages
	Microservices are (a) highly scalable and (b) trendy
	Lesson 10.2: Patterns of Communication
	1. Procedure Calls
	2. HTTP
	REST is a pattern for using HTTP
	Uniform Interface: URIs are nouns
	Examples
	Path parameters specify portions of the path to the resource
	Query parameters allow named parameters
	You can also put parameters in the body.
	Uniform Interface:�Verbs are represented as http methods
	Example interface #1: a todo-list manager
	Example interface #2: the transcript database
	It would be better to have a machine-readable specification
	OpenAPI is a machine-readable specification language for REST
	Tools for making these protocols machine-readable
	Swagger example (in a routes file)
	Swagger-generated documentation
	But we'd like to do better
	3. Websockets
	Review

